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The Shapley Value is Useful 😀

● A fair way to divide the payoff of a coalition 
among its players

● Has many ML applications - stay tuned for 
the next talk

Lloyd S. Shapley



Computing the Shapley Value is Tedious 😔

We have to calculate the marginal contributions of each player, averaged over all 
possible orderings of how the coalition can be formed

● If there are n players, we must average over n! orderings of the players

● Computing the Shapley value becomes impractical very fast

Q: Is there a more efficient way to compute the shapley value?



Problem with the Naive Representation 😕

Even before that, how do we input the coalitional game into such programs?

Michael: How can computing the core be polynomial if the game has an 
exponential number of subsets of N?

Kevin: It is polynomial to the size of the input, if your input size is exponential then 
too bad.

Rest of the class: *audible laughter*



Motivations for Compact Representations

● We want more efficient ways to compute the solution concepts

● We want more compact ways to represent coalitional games
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Compact Representation 👏

Representations that require at most polynomial space in the number of players

Limitations

● Tradeoff between the compactness of the representation, and the complexity 
of the associated computational problems

● Representations may not be able to cover all coalitional games



Weighted Graphs



Weighted Graphs

Proposed by Deng and Papadimitriou (1994)

Idea: Represent the coalitional game as an undirected, weighted graph

● Vertices ➔ Players
● Edges ➔ Some integer
● Value of a coalition ➔ The weight of its induced subgraph

Games that are represented this way are called induced subgraph games



Weighted Graphs Representation

Consider a game with players N = {A, B, C, D}
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Weighted Graphs Shapley Value Computation

1. Consider every edge in the graph to be a separate game

2. Compute the Shapley value of a player in each edge game and sum them up 

Why does this work? (Hint: one of Shapley’s axioms)



Weighted Graphs Shapley Value Computation

1. Consider every edge in the graph to be a separate game

2. Compute the Shapley value of a player in each edge game and sum them up 
(Shapley’s axiom: Additivity)

a. Players gets a value of 0 for an edge they are not connected to

b. Players gets half the weight of an edge they are connected to      
(Shapley’s axiom: Symmetry)



Weighted Graphs Properties

Compact ✔ for a game with n players, we only need O(n2) space

Not Complete ❌ there are games that the weighted graph can’t represent     
(e.g. a majority voting game)

Computing the Shapley value: Polynomial



Marginal-Contribution Nets



Marginal-Contribution Nets

Proposed by Ieong and Shoham (2005)

Idea: Use a set of rules to describe the marginal contributions of the players

● Rules are in the form

Pattern ↦ value

● Patterns ➔ boolean condition over the set of players
● Value of a coalition ➔ sum of the values of all rules that apply to the coalition



MC-Nets Representation

Consider a game with players N = {A, B, C, D}

{A} ↦ 1

{A ∧ B} ↦ 2

{B ∧ D} ↦ 7

{A ∧ D ∧ C} ↦ 6

MC-Net Representation 
in the basic form     (only 
conjunctions)

v({A, B}) = 1 + 2 = 3

v({A, B, D}) = 1 + 2 + 7 = 10

v({B, C, D}) = 7



MC-Nets (Basic Form) Shapley Value Computation

1. Consider each rule as a separate game

2. Compute the Shapley value of a player in each rule and add them together 
(Shapley’s axiom: additivity)

a. For each rule a player belongs to, the player gets the value of that rule 
divided by the number of players in the rule (Shapley’s axiom: symmetry)

MC-Nets are a generalization of Weighted Graphs



MC-Nets Properties

Compact ✔ for a game with m subgames, where the largest subgame has n 
players, it takes O(m2n) space

Complete ✔* one rule for every possible coalition

○ Trade off between representational power and computation efficiency

Computing the Shapley value: Linear in the basic form



Related Work to Consider

Our discussion has been focused on the Shapley value

● What about the core?

The methods described in this presentation rely on the coalitional game to have 
certain properties

● What about more general methods? (e.g. read-once MC-nets)



Takeaways 👋
We use compact representations to:

● Reduce the space required to represent coalitional games
● Improve computational complexity for solution concepts

Trade off of compact representations

● ⮟ Representational power/Compactness ↔ ⮟ Computation efficiency
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